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Here, it is described how N-dimensional parameterized vector spaces, possessing an
adapted real metric with the addition of some supplementary axioms, permit the deduc-
tion of Heisenberg relations and Schrodinger equation. This specific space structure,
proposed as a container of the description of quantum objects, suggests, in this way,
that both quantum mechanical cornerstones can be considered as trivial consequences
of such a special vector space choice.
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1. Introduction

Recent papers dealing with the role of Heisenberg relations [1] seems to
conclude that uncertainty relationships constitute somehow a quantum theo-
retical cornerstone as well as an essential previous step towards setting up
Schrédinger equation. Such an affirmation can be made in this way, as within
the most recent paper [2], not only it is clearly shown that Heisenberg relations
are deductible from classical considerations, under well defined statistical con-
ditions, but Schrodinger equation can be derived from these relationships by
means of further elegant theoretical deductions.

This situation has inspired a previous study [2], where it was shown
Heisenberg relations could be also deduced by means of the definition of param-
eterized N-dimensional metric vector space structure. Such space structure, after
some straightforward working definitions and a sequence of few ancillary axi-
oms, presents the possibility of deducing the well-known uncertainty relationships,
through the usual metric related constructs linking two vectors, as Gram matrix,
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cosine of the angle and Schwartz inequality. This previous space set up and the
subsequent deduction opens the way to work out an extension of the Heisenberg
relations and, then, permits deduce Schrodinger equation formalism. This power-
ful performance constitutes the main subject studied in this paper.

In order to proceed with this task, first a résumé of the previously described
definitions will be given. It will be followed by a generalization of the results
leading to Heisenberg relations, which will contain them as a particular case.
From here, it will be presented the possibility to add to the deductive mecha-
nisms the possible use of Euclidean distances and triangle inequality in order
to obtain a similar relationship to Heisenberg uncertainty, as the one deduced
employing the cosine of the angle subtended by two vectors definition or
Schwartz inequality. Finally, Euclidean distances between N-dimensional param-
eterized metric space vectors, submitted to a simple variational procedure, can
be shown as a natural path permitting to deduce a general equation structure,
with the form of time independent Schrodinger secular equation.

2. Parameterized metric vector spaces

The sequence of definitions and the subsequent deductions needed to con-
struct the Heisenberg relations and the Schrodinger equation, as mentioned in
section 1, have to start with the statement consisting into that an N-dimensional
parameterized metric vector space Vy(C, t) can be defined by means of the equa-
tion

Vn(C,t) ={x(@®)|x@) ={x; (1))} { =1, N)At e D CR;VI : x;(t) e C}. (1)

That is: every vector of Vy (C,t) is supposedly composed by a N-dimensional
ordered set of complex valued, continuous and differentiable functions of a real
variable. Such variable, symbolized in turn by the parameter: ¢, is supposed to
possess values contained within some domain D of the real field. It must be said
now that this parametric monodimensional construction has been chosen for
notation easiness sake. In this sense, following a previous study of such param-
eterized spaces [4], intended to deal with the description of general space-time
frameworks, the space definition contained in equation (1) must be considered
a simplified form of an, as complex as imaginable, general parameterized space
structure, where the parameter r can be substituted by a properly defined para-
metric array of arbitrary dimensions. Such a construct, as the one chosen here,
resembles the typical form of the Euclidean N-dimensional space in curvilinear
coordinates [5].

2.1. Vector real inward product

The metric in Vy(C,t) can be constructed, in addition, by means of set-
ting a previous real inward vector product definition up. That is, a new real
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component vector can be arranged within Vy (C, t) simply, writing the algorithm
Vx,ye Vw(C,t) > Jz={x: y} = %(x* *y+y*xx) e Vy(R,1). 2)

Where in equation (2) it has been used the inward vector product definition [6],
which has been previously employed in several fields, mainly dealing with quan-
tum mechanical applications [7]:

VYa,b e Vy(C,t) > c=axb=1{c; =a;b;} € Vy(C,1).

It must be now realized that the real inward products, involving a unique vector,
produce the elements of the associated vector semispace: Vy(R™T, 1), [8] as it may
be casily seen from equation (2):

Vx e Vy(C,1) > Ir ={x:x}=x*sxx={r; = [x;)’} = x> € VyR", ). (3)

A vector semispace is defined over the positive definite real field and at the
same time, the vector sum is provided with an additive abelian semigroup struc-
ture [9]. The vector semispaces characteristic features [8], as well as the most nat-
urally appropriate metric definition [10] within such vector semispaces, have been
recently published. The semispace vectors defined in equation (3) can be also
connected with the usual structure of probability distributions and possess the
power of being the basic composition from where a vector space can be made
[11].

2.2. Vector space real metric

The definition of real inward vector products can produce in a natural way
a convenient metric structure within N-dimensional parameterized vector spaces.
In order to grasp this possibility, it is only necessary to properly propose a for-
mal way to perform real scalar products within the complex parameterized space
Vn(C, t). For that purpose, it can be defined, starting from the real inward prod-
uct (2), the vector to scalar transformation: Vy(C, t) — R, by means of employ-
ing the following algorithm:

Vix:y}e Vy(R,t) —
<{x : y}>: Z/{x . y}[dt :/ (Z{x : y}[dt>
; /D D\
- %Z/D (xr @) yr(t) + yr(1)*x; (1)) dt € R
1

thus, it is worthwhile to use a simpler notation to express the real scalar product.
The following convention will be followed from now on:

(roy)y={x:yh.
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When considering the x = y case, then the real scalar product and the Fuclidean
norm coincide:

({x:x}):(x:x):Z/ |x,|2dt=/ (Zmﬁ) dt = (x|x) € R*.
; YD D\

3.  Vector triads in parameterized metric vector spaces
3.1. Triads

In the space Vy(C,t) with a real metric, as defined in the section above,
there in addition it can be chosen, for each non-zero vector element x € V(C, t)
a triad: T(x). A triad is defined as a set of three vectors, composed by the triad
generator vector coincident with the normalized vector:

[x) =x() € VN(C,t) A {x 1 x) = (x]x) =1

and a pair of triad companion vectors. The first triad companion is made by
means of a vector, which can be written as:

0x) = 6(t)x(t) € Vn(C, 1), 4)

or which can be constructed multiplying the triad generator by a well defined,
continuous and differentiable real function 6(¢) of the parameter ¢.
The second-triad companion vector is defined, in turn, as:

ox

ad
g[x(f)] =% =

ox

¥> e Vy(C, 1) ()

and in this manner, it is considered made with the first derivative of the triad
generator vector with respect the basic space parameter ¢. Such derivative can
be defined in turn as:

Flrol={ ol = o).

In this manner, it can be admitted the definitions (4) and (5) could be used
as additional axioms holding in the chosen parameterized metric vector spaces.
Thus, a triad can be defined accordingly as:

T — .9 . ax j— . 9 .
(x)_{x’ X5 E}z{l'x)? x>’

ox
§>} C Vn(C,1).

Of course, both triad companions can be considered images of the complex
parameterized space Vy (C,t) endomorphisms: 6 (¢) and (3/9¢).
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3.2. Orthogonal relationships within a triad

Once a triad T (x) is selected in Vy (C, 1), then, the projector over the direc-
tion of the triad generator vector is easily constructed, as well as the projector
over the associated orthogonal complement:

lx) > Pe=[x) (x| A Pr=1— P, =1—|x){x].

The triad companion vectors can be made orthogonal to the generator vector
just by projecting them into the orthogonal complement subspace:

ox 0x ox
A=) > =)= P |—),

ot ot at
which constitutes a procedure equivalent to the Gram—Schmidt orthonormaliza-

tion algorithm, thus, after that, the projections are orthogonal to the triad gen-
erator vector:

|6x) — |6x) = P; |0x)

(x|0)?)=0/\<x 5

2_):>=0—>(x:9i)=<x:§>= . (6)

Nothing opposes to admit such a general feature can be considered active
within each triad. Therefore, it can be supposed that the orthogonality relation-
ships (6) hold within every triad. A similar consideration was made by Weyl [12],
as a natural way to simplify the Heisenberg relations deduction. Thus, one can
safely consider that the equivalent simplified notation can be employed within a

triad from now on
0x 0x
ar | |ot/]’

6x) = 0x) A

3.3. Orthogonality relations and expectation values in a triad

The orthogonal relationships (6), can be interpreted as a convenient device,
transferring into the triad companion vectors the additional property to possess
a null expectation value, associated to the function 6 (¢) and the first derivative
(0/0t) operator. That is, the following equalities:

@)=(x:0x)=O{x:x} ) =x|6x)=0 7

hold and also at the same time the derivative operator corresponding ones:

R MR
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A valuable consideration can be made at this moment, dealing with the
parameter first derivative expectation values. In fact, equation (8), leading to the
first parameter derivative expectation value of a given triad generator vector can
be also alternatively written as:

R R R

however, this property indicates the fact consisting in that the expectation value
can be considered as the result of the following integral:

9 dp 9
—)=(=—)= | —I[p@®]ds,
<8t> <az> /Daz[p()]
where the density function p (¢) is defined in the usual way, within the parame-
terized metric semispace Vy (R", ) elements:

p @) =1{x:x}=Ilx®.

4. Variances and covariance within triad companion vectors

Another important question, which turns to be extremely relevant for the
progress of the subsequent theoretical development, corresponds to the form
taken by variances associated to both triad companion vectors. Variances, for
the operators involved in triad companion vectors definition, can be defined by
means of the positive definite expectation values:

(6%) = (6x : 6x) = (67 {x : x)) = (6x | 6x) = (x| 6 Ix) € R ©)
and
9 dx dx\ [ox | ox N

Equations (9) and (10) can be used in any case. However, it can be easily
realized the convenience to make equation (10) able to be also represented by
the equivalent axiomatic property:

a
_x> =+ <x
ot

dx dx\ [ox
at ~ar|  \at
which, when the minus sign holds or it is chosen for convenience, one can eas-

ily admit that the Green theorem [14] applies to the parameterized metric space
vectors.

82

912

x>, (11)
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Variances, then, owing to the nullity of the expectation values, as expressed
in equations (7) and (8), become coincident with the expectation values (10) and
(11), or:

var (9) = (0°) A var (2) = <8_2> (12)
ot a2

At the same time, it is easy to see that the scalar product of the triad companion
vectors, can be interpreted as the covariance between the associated operators,

or:
9
ox 25\ Zcov (0: 2. (13)
ot o1

5. Gram matrix, angle subtended and Schwartz inequality associated to triad
companion vectors

Knowing the previous definitions and properties of a triad 7 (x) in Vy(C, 1),
it is easy to write the relevant part of a Gram matrix for a triad, which is made
by a (2 x 2) matrix, composed by the real scalar products involving the triad
companion vectors:

G— ((9)6 | Bx) (9x : ‘;—f))’

fox - 22} (o | &)

this is so, as the triad generator is orthogonal to the companion vectors, and

therefore the first row and column of the (3 x 3) triad Gram matrix are coin-

cident with the unit matrix ones, and consequently both become irrelevant for

the following development. The Gramian, simply the determinant of the Gram
matrix, is easily developed to fulfill the inequality:

3 ax\?
Y _lox: ) s, (14)
ot o1

provided the companion vectors are admittedly considered to be linearly inde-
pendent and, in this manner, the Gram matrix, being positive definite, leads to
the relationship (14). Equation (14) represents the same algorithm as to use the
definition of the cosine of the angle subtended by the involved companion vec-

tors, as it can be written:
ax\\ !
— e [0, 1].
ot >> (0. 1]

@) = o - 22V o
cos” () = <9x : 8t> ((Qx | 6x) < 5

ox
Det |G| = (6x | 9x)<—
dt
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In any case, both expressions lead to the so-called Schwartz inequality,
which can be written as:
d ax\’
V> (ox: 21 (15)
ot ot

owing to the fact that some situations, where the companion vectors could be
linearly dependent, that is: scalar multiples, can be also taken into account.

ox

(Ox | 9x)<§

6.  General form of Heisenberg relations

The mathematical structure of the N-dimensional parameterized metric vec-
tor spaces is already perfectly set in order to deduce Heisenberg relations. First,
it has to be considered equation (15) and then using equations (9)—(12) after-
wards, in order to obtain the inequality:

r(0) r(i>><9 8_x>2 (16)
va va o) =X o)

Also, owing to the covariance definition (13), involving the triad companion vec-
tors, then equation (16) above can be alternatively written as:

3 3\’
var(@)var| — ) > cov|O; — | .
dt ot

6.1. Preliminary considerations

Now, the usual treatment can be followed in order to handle the right-hand
side of equation (16). Subsequently, just to obtain equivalent elements as those
found in the literature, see for example references [13, 15], it can be written:

ad ox a6 ox
<E{x :9x}>=<§ :9x>+<x : §x>+<x :9§>. (17)

First, one can consider as a natural axiom the situation where the right
hand side integral, involving the companion vectors, can be made a constant:

<% {x: 9x}> =w,

which, when 6 (¢) = ¢, can be supposed null [13]. Also, it is easy to find that:

0x 0x ox
x:0—)=(0x:—)=(— :0x
< 8t> < 8t> <8t >
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and moreover, it can be taken in consideration the middle integral in
equation (17) is expressible as a norm of the triad generator vector, weighted by
the derivative (96/0t). Furthermore, such a norm coincides with the unity, when
the triad companion operator is chosen as: 0 (¢) = t. Therefore, using these ideas,
after providing this weighted norm expression with a specific value:

90
<x : Ex> =,
it can be also written:
ox 0x 1 1
w=n+2<x:9§>—><x:95>:§(w—n)=§k,
which in the case 6 (¢) = ¢, will be transformed simply in A = —1. In the present

discussion, it is sufficient to consider as an axiom that A # 0 holds. Of course,
owing to equation (13) it can be also written:

cov |6 9 lk
v g; — | ==X
ot 2

This constant triad companions covariance result can be simply admit-
ted because of the constant nature of integral (17), but also precludes, in fact,
even a better situation: it corresponds to an alternative property with respect
Heisenberg relations. Such a characteristic was discussed in a previous work [2],
coinciding with an earlier appreciation of Bohm [15] dealing on the importance
of covariance in quantum mechanical theory.

6.2. Heisenberg relations

Thus, substituting this result in equation (16), one obtains:

ar (0) var 9 > 1)\2
A% A% 'l = = )
ot 4

which constitutes the Heisenberg relations for a given triad definition.
Uncertainties being defined as the standard deviations or the square roots
of variances:

A(0) =+/var(0) A A <3> = _[var (£>,

ot ot

produce the more classical looking literature expression [16] form:

r@a(2)s b
ar) ~ 27

coinciding with the usual Heisenberg relations when 6 (¢) = ¢t and thus:|A| = 1.
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7.  Triad Euclidean distances

After the previous discussion, one can wonder about the Euclidean dis-
tances can be used for some similar purposes, as the angle subtended by the
triad companion vectors, in order to find out Heisenberg relations or equivalent
expressions. This section is devoted to discuss such kind of possibilities.

7.1.  Euclidean distances

Suppose a triad T (x) in V (C,¢), the squared Euclidean distance of the
triad generator vector to the first triad companion can be written:

Dz(x;o9x)=(x|x)—|—(0x|9x)—2(x:9x),

however, due to the normalization of the triad generator plus the orthogonality
relation (7), it can be finally written:

D? (x;0x) = 1 + (0x | Ox) = 1 + var (0).

Similar considerations allow writing for the squared Euclidian distance
between generator and second companion triad vectors:

D? x'a—x =1+ var i
"ot ) ar )’

Finally considering the couple of triad companion vectors it can easily be writ-

ten:
) 0x 0 0x
D \6x; — ) =var(@)+var| — | —2(0x : —},
at ot dt

which, owing to the previous considerations about the value of the last inte-
gral right hand term, also representing the triad companions covariance, can be
finally written as:

2 (g, 9% _ 9\ _
D (0x, E)t>_Var(Q)—l-V.ar(at) A. (18)

7.2. Heisenberg relations from Euclidean distances

After considering the above expressed squared distances in terms of the
variances of the operators entering the triad companions, the triangular inequal-
ity can be invoked to obtain, after squaring both sides:

DZ()c;Ox)—l-D2 x;a—x +2D (x;6x) D x;a—x 2D2 0x;a—x ,
dt at ot
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substituting the squared distance values previously obtained, eliminating after-

wards equal terms, appearing on both inequality sides and finally rearranging the
constants, the new inequality is found:

D (x;0x) D ) S 1+—1A =—
; ; > = —o,
X X X 81‘ 2

which, after squaring both sides again, produces the expression:

(1 + var (0)) (1 + var (%)) > o2,

which also can be considered as constituting an alternative form of Heisenberg
relations.

8. Schrodinger equation deduced from Euclidean distances between triad
companion vectors

8.1. Euclidean triad companion distance as quadratic error

Coming back to the Euclidean distance between the triad companion vec-
tors, as deduced and expressed in equation (18), there can be alternatively writ-

ten:
a—x—k= 0x—a—x : 9x—8—x =e?,
ot ot ot

D (0x: %) = (x| o) + [ 2F
"ot ) ot

where e® can be associated to the quadratic error between the triad companion
vectors. Of course, one can expect, owing to the nature of the companion vec-
tors, that:

6(2) >0,

where the zero value has to be taken as meaning the coincidence of both triad
companion elements. Nothing opposes that this null situation can be taken as a
restrictive axiom, accepting in this way the fact that it could never happen within
a triad.

8.2. Variation of the quadratic error

This state of affairs developed up to now, also allows admitting the possi-
ble presence, in the parameterized metric vector space, of some set of variational
parameters, which can be considered as embedded into the vector component
functions.
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The procedure of optimal variation of the quadratic error with respect these
parameters, first provides the augmented Lagrange function A (x), as a conse-
quence of submitting the optimal search to the restriction of the triad generator
vector unit norm:

2
972

A(x)=<x|92|x>—<x Bat x>—x—s(<x|x>—1),

where the minus sign in the second-order derivative integral has been chosen for
convenience and ¢ is an undetermined Lagrange multiplier. Variation of the aug-
mented function, remembering that A has to be considered a constant, provides:

2

SA (x) = (5x] 6% |x) — <8x =

x>—8(8x|x)=0,

which leads to the Euler equation:

82

6% |x) — —
x) or?
Equation (19) is equivalent to a classical time independent Schrodinger
equation. It can be rewritten trivially, by using the secular equation formalism:

|x) —elx) =0. (19)

82
(‘ﬁ +92> Ix) = e |x). (20)

It is also straightforward to see that equation (20) transforms into the
Schrédinger harmonic oscillator equation when choosing: 6 () =¢. At the same
time, introducing some potential function by means of considering: 6 (t) =+/V (¢),
the following equation:

o2

82
( +V(t)> |x) = ¢|x)

is obtained, which lacks of the quantum one half factor in the second deriva-
tive. However, this constant can be considered just as a scale factor, affecting
the potential and the Lagrange multiplier. Obviously enough, the Lagrange mul-
tiplier can be associated to the quantum system energy.

9. Conclusions

The properly defined N-dimensional parameterized metric vector spaces
permit to set up Heisenberg’s uncertainty relations first and, then, Schrédinger
equation afterwards. After realizing this, it may be concluded that, not only
these fundamental quantum mechanical ideas are easily deducible from the space
mathematical structure, containing basic quantum mechanical object descriptors
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appropriately set, but it can be easily admitted that both, Heisenberg relations
and Schrodinger equation, have an unavoidable connection with the natural
characteristics of such spaces.
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